Non-Muscle Myosin II Isoforms Have Different Functions in Matrix Rearrangement by MDA-MB-231 Cells
نویسندگان
چکیده
The role of a stiffening extra-cellular matrix (ECM) in cancer progression is documented but poorly understood. Here we use a conditioning protocol to test the role of nonmuscle myosin II isoforms in cell mediated ECM arrangement using collagen constructs seeded with breast cancer cells expressing shRNA targeted to either the IIA or IIB heavy chain isoform. While there are several methods available to measure changes in the biophysical characteristics of the ECM, we wanted to use a method which allows for the measurement of global stiffness changes as well as a dynamic response from the sample over time. The conditioning protocol used allows the direct measurement of ECM stiffness. Using various treatments, it is possible to determine the contribution of various construct and cellular components to the overall construct stiffness. Using this assay, we show that both the IIA and IIB isoforms are necessary for efficient matrix remodeling by MDA-MB-231 breast cancer cells, as loss of either isoform changes the stiffness of the collagen constructs as measured using our conditioning protocol. Constructs containing only collagen had an elastic modulus of 0.40 Pascals (Pa), parental MDA-MB-231 constructs had an elastic modulus of 9.22 Pa, while IIA and IIB KD constructs had moduli of 3.42 and 7.20 Pa, respectively. We also calculated the cell and matrix contributions to the overall sample elastic modulus. Loss of either myosin isoform resulted in decreased cell stiffness, as well as a decrease in the stiffness of the cell-altered collagen matrices. While the total construct modulus for the IIB KD cells was lower than that of the parental cells, the IIB KD cell-altered matrices actually had a higher elastic modulus than the parental cell-altered matrices (4.73 versus 4.38 Pa). These results indicate that the IIA and IIB heavy chains play distinct and non-redundant roles in matrix remodeling.
منابع مشابه
Distinct roles of nonmuscle myosin II isoforms in the regulation of MDA-MB-231 breast cancer cell spreading and migration.
Initial stages of tumor cell metastasis involve an epithelial-mesenchyme transition that involves activation of amoeboid migration and loss of cell-cell adhesion. The actomyosin cytoskeleton has fundamental but poorly understood roles in these events. Myosin II, an abundant force-producing protein, has roles in cell body translocation and retraction of the posterior of the cell during migration...
متن کاملRegulation of MDA-MB-231 Breast Cancer Cell Spreading Distinct Roles of Nonmuscle Myosin II Isoforms in the
Initial stages of tumor cell metastasis involve an epithelialmesenchyme transition that involves activation of amoeboid migration and loss of cell-cell adhesion. The actomyosin cytoskeleton has fundamental but poorly understood roles in these events. Myosin II, an abundant force-producing protein, has roles in cell body translocation and retraction of the posterior of the cell during migration....
متن کاملEffect of non-thermal atmospheric pressure plasma on MDA-MB-231 breast cancer cells
Cold atmospheric plasma (CAP) has received great attention due to its noteworthy ability, and has also been widely studied over few decades in physics, biology and medicine. The purpose of this study is to evaluate the cold atmospheric pressure plasma effects on the proliferation of breast cancer cells. MDA-MB-231 was used for this experiment. MDA-MB-231 cells were cultured in 24-well plate and...
متن کاملHistone deacetylases 1, 6 and 8 are critical for invasion in breast cancer.
Histone deacetylases (HDACs) are associated with the development and progression of cancer, but it is not known which of the HDAC isoforms play important roles in breast cancer metastasis. This study identified the specific HDAC isoforms that are necessary for invasion and/or migration in human breast cancer cell lines. MDA-MB-231 cells were significantly more invasive and expressed higher leve...
متن کاملDirect RNA sequencing mediated identification of mRNA localized in protrusions of human MDA-MB-231 metastatic breast cancer cells
BACKGROUND Protrusions of cancer cells conferrers a vital function for cell migration and metastasis. Protein and RNA localization mechanisms have been extensively examined and shown to play pivotal roles for the functional presence of specific protein components in cancer cell protrusions. METHODS To describe genome wide RNA localized in protrusions of the metastatic human breast cancer cell...
متن کامل